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Astronomy picture of the decade

2019 ApJL 875  

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines 

sensitive to features  
on angular scale 

  ∆ 𝜃~
𝜆
𝑏



Radio Optical
�̄� ≫ 1 �̄� ≪ 1

Can literally record entire 
waveform, over some 

band, separately at each 
receiver station and 
interfere later offline

One photon at a time!  Need to bring paths to 
common point in real time 

Need path length compensated to better than 
c/bandwidth 

Need path length stabilized to better than  𝜆

Accuracy ~ 1 mas
Max baselines to ~ 100 m

mode population

mode population



Two-photon techniques



• Measure photon wave function at one station so effectively teleport the sky photon 
to the other station 

• Need to transfer the photon quantum state  can use quantum networks, this 
will allow long distances

Second photon for quantum assist



Quantum Network
• Attenuation in fibers  need quantum repeater to reproduce qubits 

– Simple amplification will not conserve the quantum state 

• Qubit teleportation: produce entangled photons and send them to two 
locations  

• Bell State Measurement (BSM) on one photon will collapse the wave 
function of the other one (or swap entanglement, or teleport photon)

A.Zeilinger



Idea: use another star as source of coherent states for the interference 

Relative path phase difference δ1 − δ2 can be 
extracted from the coincidence rates of four single 
photon counters: c, d, g and f 

Perfect to start exploring this approach 

https://arxiv.org/abs/2010.09100

Rates HBT

New oscillatory term!

Full QFT calculation



Hanbury Brown – Twiss Interferometry
If points are close enough two options of photons paths are 
coherent = photon phases not so different and they interfere 

Interference produces photon bunching or HBT effect



Earth rotation fringe scan

example of oscillations 
for pair of stars

doi.org/10.1103/PhysRevD.107.023015



Possible impact on astrophysics and 
cosmology

offers orders of magnitude better astrometry with major impact 

• Parallax: improved distance ladder - sensitive to Dark Energy 
• Proper star motions - sensitive to Dark Matter 
• Microlensing, see shape changes 

• Black hole imaging  
• Gravitational waves, coherent motions of stars - microHz range 
• Exoplanets

https://arxiv.org/abs/2010.09100
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Requirements for detectors

• Photons must be close enough in frequency and time to interfere                 
temporal & spectral binning: need ~ 0.1 nm * 10 ps 

• Fast imaging techniques are the key 
– Several promising technologies: CMOS pixels+MCP, SPADs, SNSPDs 
– Target 1-100 ps resolution 

• Spectral binning: diffraction gratings, echelle spectrometers 

• High photon detection efficiency
Quantum-Assisted Optical Interferometers: Instrument Requirements; Andrei Nomerotski et al, 
Proceedings Volume 11446, Optical and Infrared Interferometry and Imaging VII; 1144617 (2020) SPIE 
Astronomical Telescopes +Instrumentation, https://doi.org/10.1117/12.2560272;  arxiv:2012.02812



Possible technologies: SNSPD
• Superconducting nanowires 

– Used Single Quantum 
SNSPD 

– 20 ps resolution for single 
photons using SPDC photon 
pair source 

– 3 ps devices reported

HBT peak



Possible technologies: SPAD

50 ps resolution 

Developed in EPFL (E.Charbon et al)

SPAD = single photon avalanche device 
Semiconductor device: p-n junction with 

amplification LinoSPAD2



Benchtop Verification

SPAD and SNSPD readout

arxiv.org/abs/2301.07042  
Optics Express 31, 44246-44258 (2023)



HBT and HOM Cancellation

HBT and HOM Cancellation



Hong-Ou-Mandel effect
tim

e

credit: Wikipedia HOM article

50/50 beam splitter

HOM dip for coincidences of two outputs





Phase dependence

Population of HBT peaks as function of phase = phase oscillations

arxiv.org/abs/2301.07042  
Optics Express 31, 44246-44258 (2023)



Next step: spectral binning



Spectral binning
Two beams of thermal photons  diffraction grating 
Based on intensified Tpx3Cam, ns time resolution

spectral resolution for Ar lines ~0.15 nm

Ar spectrum
A.Nomerotski et al. Intensified Tpx3Cam, 
a fast  data-driven optical camera with 
nanosecond timing resolution for single 
photon detection in quantum applications, 
arxiv.org/abs/2210.13713, published in 
JINST



Timepix3 Camera  Tpx3Cam 
Camera = sensor + ASIC + readout 

Timepix3 ASIC: 
• 256 x 256 array, 55 x 55 micron pixel 

– 14 mm x 14 mm active area 
• 1.56 ns timing resolution 
• Data-driven readout, 600 e min threshold, 80 

Mpix/sec, no deadtime 
• each pixel measures time and flux, ~1µs pixel 

deadtime when hit

Sensor is bump-bonded to chip 

Use existing x-ray readouts:  
SPIDR (Nikhef & ASI) 

www.amscins.com

Zhao et al, Coincidence velocity map imaging using Tpx3Cam, a time 
stamping optical camera with 1.5 ns timing resolution, 

Review of Scientific Instruments 88 (11) (2017) 113104. 

T. Poikela et al, Timepix3: a 65k channel hybrid pixel readout chip 
with simultaneous ToA/ToT and sparse readout, 

Journal of Instrumentation 9 (05) (2014) C05013. 



Intensified camera: use  
off-the-shelf image intensifier

Image intensifier (Photonis PP0360EG)

Cricket@

Intensifier

Intensified cameras are common: 
iCCD 
iCMOS cameras



Quantum photon sources -  
spontaneous parametric down-

conversion (SPDC) sources

Produce two photons correlated (sometimes entangled) in 
1. Time 
2. Position 
3. Energy 



SPDC source in spectrometer

• 810 nm idler and signal 
• no filter

time coincidenceswavelength anti-
correlation 

for photon pairs

signal & idler in spectrometer
5 nm

pump wavelength



Next steps: spectrometer based on 
LinoSPAD2

Diffracted photon stripe projected on to linear array

Spectrometer time resolution: 5 ns 100 ps



Sergei’s slides



Fast spectrometers at Heisenberg limit
For a single photon uncertainties are bounded by Heisenberg uncertainty principle

∆ 𝑡 ∗ ∆ 𝐸  ≥  ℏ /2 0.03 nm * 10 ps    

Achieved 0.04 nm spectral and 40 ps timing resolution 
only x10 more than  ∆ 𝑡 ∗ ∆ 𝐸  ≥  ℏ /2



telescopes



On-sky measurements
• Experimenting with SM fiber coupling 
• Trying adaptive optics



On-sky measurements

Mizar A & B 
– 50 ms exposure 
– 15 arcsec separation

Jitter of two stars is correlated and could cancel in differential measurement 



Important point for discussion

• For amplitude two-photon 
interferometry light needs be 

coupled to SMF 

• This is difficult!                            
5-10 micron spot, highly       

non-trivial adaptive optics 

• If achieved then interference 
and spectrometers are easy



Two possible geometries

collect telescope light to SMF and send 
to spectrometer/interferometer 

• Difficult, 5-10 um spot, new 
adaptive optics - collection 
efficiency? 

send telescope light directly to 
(existing) spectrometer 

• Need new detectors 

1) 2) 

SMF

telescope telescope

spectrometer
spectrometer

detector



There is hope!

coupling efficiency in J - H bands ~ 50% 



Developing the quantum

Geometry: 2 stars + A,B,C 
telescope stations + source of 

entangled photon states + 
detectors 34

Quantum protocol evaluates experimental 
observables 

Common approaches with quantum sensing and 
quantum metrology  

Use multi-partite entanglement (ex W or GHZ states) distributed between multiple 
stations and quantum protocol to process information in noisy environment

Quantum protocol circuit

detectors

S.Vintskevich et al



Sensor R&D

New ideas for 2d imaging sensors which can provide 20 ps resolution 



20 ps timing
• 20 ps timing is needed for next 

round of CERN experiments in 10 
years, there will be lots of 
investment in fast ASICs 

• examples:  

• Timepix4 chip: 200 ps  

• Timespot1 chip: 50 ps 

• Hybrid detector: SPAD + 20 ps chip

ASIC

SPAD sensor



• SuperSPAD sensor 
• 4 single devices so far 

• Developed in AQUA group in EPFL 
• 7.5 ps FWHM time resolution 
• Starting tests

5 ps timing



Main points to take home
• Two-photon interferometry can permit independent stations over 

long baselines 
• New ideas suggest quantum sensing technology can dramatically 

enhance astrometric precision, requires single photon cameras with 
10 ps resolution 

• Promising results with 50 ps spectrometers 

Broad program in quantum-assisted optical interferometry ahead, efforts 
underway to develop new timing technologies 



Main publications

• Original idea: https://doi.org/10.21105/astro.2010.09100 
• Earth rotation fringe scanning: doi.org/10.1103/PhysRevD.107.023015 
• Experimental proof of principle: https://arxiv.org/abs/2301.07042  
• Fast spectrometer: https://arxiv.org/abs/2304.11999 

• See https://www.quantastro.bnl.gov/node/3 for the full list

https://doi.org/10.21105/astro.2010.09100
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023015
https://arxiv.org/abs/2301.07042
https://www.quantastro.bnl.gov/node/3
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