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post-main sequence 
massive stars

OB supergiants 
(blue supergiants):
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● Stellar winds: “continous emission of mass from the stellar photosphere”

● Virtually, all stars (at least in a certain evolutionary phase) have winds!

● The Sun (main sequence low-mass star) has a stellar wind, the solar wind...

Credits: NASA/SOHO, ESA/NASA Solar and Heliospheric Observatory ( June 15, 1999,)

● Main sequence O-type stars:

– Much larger mass-loss rates!
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● Massive stars have radiative line-driven winds: 
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Tranfer of momentum: 
base of the wind
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● Massive stars have radiative line-driven winds: 
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P-Cygni profiles

stellar wind
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● Massive stars have radiative line-driven winds: 
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Geneva evolution models (Ekström et al. 2012):
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Evolutionary scheme of massive stars:
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Geneva evolution models (Ekström et al. 2012):
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“Stellar winds are very 
important during all the 

evolutionary phases 
of massive stars!”

TAKE-HOME MESSAGE:
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Higher L: higher mass-loss rate
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Higher L: higher mass-loss rate Function of other parameters!
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● Motivation for introducing the (modified) wind momentum (Dmom):

(Kudritzki 1989; Kudritzki 1995): CAK-theory of line-driven winds

...answering the first slide: the wind momentum luminosity relation (WLR)
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metallicity and spectral-type
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● Motivation for introducing the (modified) wind momentum (Dmom):

...answering the first slide: the wind momentum luminosity relation (WLR)

stellar luminosity

metallicity and spectral-type: “Maybe our problems start here”

(Kudritzki 1989; Kudritzki 1995): CAK-theory of line-driven winds
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CAK-theory of line-driven winds

Parenthesis: CAK-theory of radiative line-driven winds 21/55



  

● Now we have a simple relationship between a wind quantity (Dmon) and L:

● So what?

● If you know (assume?) a certain WLR and if you determine Dmon:  

Congratulations! 

You can are able to estimate the stellar luminosity and the distance!

WLR: a distance estimation method 22/55



  

● Now we have a simple relationship between a wind quantity (Dmon) and L:

Derived from the CAK-theory: does it work indeed?

Short answer: 

“Yes, the WLR for massive hot stars works, but with problems...”

WLR: a distance estimation method 23/55



  

Mokiem et al. (2005)

● OB supergiants in the Galaxy:
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Theoretical WLR 
from Vink & de Koter 

(2000)



  Bresolin & Kudritzki (2004)

● Blue supergiants in the Galaxy, Local Group, and beyond (NGC 3621):
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  Bresolin & Kudritzki (2004)

● Blue supergiants in the Galaxy, Local Group, and beyond (NGC 3621):

(~ 7 Mpc)

(~ 0.8 Mpc)
(~ 2 Mpc)
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Theoretical mass-loss rates (Vink & de Koter 2000)

OB supergiants
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Theoretical mass-loss rates (Vink & de Koter 2000)

late O dwarfs (O8-9V)
“weak wind phenomenon”
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Theoretical mass-loss rates (Vink & de Koter 2000)

late O giants (O8-9III):

log(L/Lsun) ~ 5.2

“onset of weak winds”

Tests on the WLR (spectroscopy): problems 30/55
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Breakdown of WRL 
(Vink) at

log(L/Lsun) ~ 5.2

“onset of weak winds”

Tests on the WLR (spectroscopy): problems 31/55
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N. Machuca: PhD student

(Universidad de Valparaíso)

Tests on the WLR (spectroscopy): Massive Star Group at Valparaíso

BI-III-V stars

OI-III-V stars

32/55



  

Fitting example: HD 36512 (O9.7V)

Solved hydrodymamics code HYDWIND + radiative transfer code FASTWIND 

Evaluation of two different hydrodynamical regimes: “fast wind” and “δ-slow wind”

N. Machuca: PhD student

(Universidad de Valparaíso)
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BI-III-V stars

OI-III-V stars

log(L/LSUN) ~ 5.2:

weak winds?

N. Machuca: PhD student

(Universidad de Valparaíso)
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Ad hoc: parameterizing v(r)!

v(r) predicted from HYDWIND
                    (wind hydrodynamics)

                       X
v(r) adopted using the β-law approximation:

Curé & Araya (2023)
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Intensity interferometry of massive hot stars (blue supergiants)

Hα Intensity interferometry and spectroscopy + CMFGEN radiative transfer

37/55
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Are we able to deal with 
that?

Intensity interferometry of massive hot stars (blue supergiants) 39/55



  

● II of P Cygni (2018 and 2020) and Rigel (2020) at Calern

– Bandwidth Δλ = 1 nm, central wavelength λ0 = 656.3 nm (center at Hα)

 rB = 0

 9.5 < rB < 13.4 m  13.4 < rB < 15 m

 rB = 0

 8.9 < rB < 13.7 m

 14.7 < rB < 15 m 13.7 < rB < 14.7 m

P Cygni (2020): Rigel:

de Almeida et al. (2022) de Almeida et al. (2022)

Intensity interferometry of P Cygni and Rigel at Calern 40/55



  

Radiative transfer modeling with the code CMFGEN

CMFGEN: non-LTE transfer transfer

stellar parameters

Observer

v(r)

photosphere + wind

 
● Spectrum of hot stars: photosphere + wind

Hillier & Miller (1998)

41/55



  

CMFGEN: non-LTE transfer transfer

wind parameters

Observer

photosphere + wind

 
● Spectrum of hot stars: photosphere + wind

v(r)

Hillier & Miller (1998)
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Observer

photosphere + wind

v(r)

– Mass-loss rate:

– Wind velocity:

wind parameters

Radiative transfer modeling with the code CMFGEN 43/55



  

● CMFGEN: complex chemical composition

– H, He, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Co, and Ni

Rivet et al. (2020)

CMFGEN atomic data for P Cygni 

Computational cost: ~6h – 24h 

Radiative transfer modeling with the code CMFGEN 44/55
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● CMFGEN: spherically symmetric wind (1-D model)

– 1-D Intensity profiles I(p)
Test CMFGEN for P Cygni’s study

Toward the star

Radiative transfer modeling with the code CMFGEN 45/55



  

● CMFGEN: spherically symmetric wind (1-D model)

– Converting 1-D intensity profiles into 2-D intensity maps 

ASPRO 2/JMMC

Test CMFGEN for P Cygni’s study

Radiative transfer modeling with the code CMFGEN 46/55



  

ASPRO 2/JMMC

Test CMFGEN for P Cygni’s study
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Result for P Cygni: spectroscopic modeling and distance estimation

Varying only the mass-loss rate: reduction of ~18%

Data
CMFGEN model

● “First step”: physical model (CMFGEN) that reproduces the spectroscopic data 

2018 observation: Rivet et al. 2020 2020 observation: de Almeida et al. 2022

P Cygni (LBV star)
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d =  1.56 ± 0.25 kpc (2018)

d =  1.67 ± 0.26 kpc (2020)

From modeling the visibility curve:

d =  1.61 ± 0.18 kpc
Gaia eDR3: ~  1.60 kpc
    1.60 (+0.21 – 0.17) kpc

Result for P Cygni: spectroscopic modeling and distance estimation 49/55



  

Rigel (B supergiant)

Markova et al. (2008): Haucke et al. (2018):

 
● Our modeling of Rigel Hα profile
                                        (2020)

●  Previous quantitative spectroscopic studies on Rigel:

de Almeida et al. (2022):

Result for Rigel: spectroscopic modeling and distance estimation 50/55



  

Rigel (B supergiant) 
● β: wind velocity law exponent

β = 1.0
β = 1.5 No significant effect on the inferred distance: 

                d = 0.26 ± 0.02 kpc

 
● Our modeling of Rigel Hα profile
                                        (2020)

de Almeida et al. (2022):

 
● Hippacos distance: ~ 0.27 kpc (0.27 ± 0.03 kpc)

Result for P Cygni: spectroscopic modeling and distance estimation 51/55



  

Rigel (B supergiant) 
● β: wind velocity law exponent

β = 1.0
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● “Testing the wind momentum luminosity relation with II of blue supergiants”

● Nevertheless, in these 2 articles, we set a method for distance estimation

● To test the WLR(s) we have to observe a large sample of blue supergiant: 
~10 objects (II + Hα spectroscopy); to be modeled with CMFGEN

● Haucke et al. (2018): 19 BSGs modeled with radiative transfer models (FASTWIND)

● So, have we tested that? No (two stars: P Cygni and Rigel).

HD 80077 (B2Ia)

● Initial sample to be built.
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● “Testing the wind momentum luminosity relation with II of blue supergiants”

● Nevertheless, in these 2 articles, we set a method for distance estimation

● To test the WLR(s) we have to observe a large sample of blue supergiant: 
~10 objects (II + Hα spectroscopy); to be modeled with CMFGEN

● So, have we tested that? No (two stars: P Cygni and Rigel).

● Initial sample to be built.

● An easy task? Not at all...blue supergiants show high variability in the Hα line.

Interesting! 

(i) Testing the validity of WLR as a reliable distance estimation

(ii) Possible new insights about the wind properties of massive stars

Final remarks and perspectives 54/55



  

Thank you / Merci!

Funding: FONDECYT ANID N. 3220776
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