Stellar Intensity Interferometry with NectarCAM on the MSTs-N

with numerous inputs from LST and MST colleagues incl. particularly significant inputs from **Tarek Hassan** *(LST team, CIEMAT)*

2024.09.13

Y-ray game changer: Cherenkov Telescope Array Observatory

HEGRA ('90s)

MAGIC ('00s,'10s)

2 sites to access the entire sky w/ breakthrough performance

Sensitivity: 5-10× better than current *E*-range: 0.02-200 TeV (vs 0.1-10 TeV) *E*-resolution: <10% (vs <17%) >0.2 TeV

CTAO-N ('20s-'40s)

The MSTs on the CTAO-North Site

(LSTs) on Wed.

The MSTs on the CTAO-North Site

Detection modules of NectarCAM

Credits: A. Tsihahina & O. Ferreira

In the field?

In the field?

Calibration devices of NectarCAM

Critical design & manufacturing review ✓ → in production for 9 cameras + spares Thanks to great IJCLab R&D team, as well as Barbara Biasuzzi's postdoc, Pooja Sharma's thesis, Sonal Patel's postdoc, Coline Dubos's thesis

NectarCAM campaign in Adlershof 23/05 – 25/06/2019

From 2020 to 2023

Part 1 - MST/NectarCAM implementation

Triggered by a talk by **Tarek Hassan** at the Nov. 2022 CTAO Consortium meeting in Napoli

2024.09.13

SII with medium-sized telescopes (MSTs) at CTAO-North?

Including MSTs in the SII array improves:

- · Extent of the coverage of spatial frequencies (*uv*-plane) \rightarrow Order-of-magnitude improved precision on ~100 µas stellar radius
- · Density of uv coverage: never achieved so far! → True capacity for "model-based" imaging (phase is unknown)

Modifications of the camera

Same concept as in LST-1 and MAGIC

Same concept as in LST-1 and MAGIC

Semrock filters 425/26 nm, with \emptyset = 40 mm for NectarCAM Note: pointing accuracy of 7" \leftrightarrow 0.5mm at a focal length of 16m

Same concept as in LST-1 and MAGIC

MST/NectarCAM camera Credits for NectarCAM

PMT @ camera center -

PMT @ module center (3 modules below)

> Movable filters 1 ON + 5 OFF

At this stage, 1 PMT (central) + 5 OFF regions \rightarrow goal: increase precision on night-sky background

Systematic effect	Uncertainty
Electronic bandwidth	0.5%
Optical bandwidth	< 1%
Gain evolution of DC ADC branch	
- Seasonal temperature	Negligible
- Gain drift after DC jump	1%
- Long-term degradation	0.8%
- Deviations from linearity	Negligible
Residual electronic noise	Negligible
DC NSB substraction	$1.5/3\% (B_{mag} > 3.5)$

Table 5. Evaluated systematic uncertainties over squared visibility measurements identified to effect the MAGIC-SII system.

Semrock filters 425/26 nm, with \emptyset = 40 mm for NectarCAM Note: pointing accuracy of 7" \leftrightarrow 0.5mm at a focal length of 16m Credits: MAGIC SII paper

Same concept as in LST-1 and MAGIC

MST/NectarCAM camera Credits for NectarCAM

PMT @ camera center -

PMT @ module center (3 modules below)

> Movable filters 1 ON + 5 OFF or 2 × (1 ON + 2 OFF)

At this stage, 1 PMT (central) + 5 OFF regions

or 1 PMT (central) + 2 OFF + 1 PMT (off-axis) + 2 OFF

chessboard

Semrock filters 425/26 nm, with \emptyset = 40 mm for NectarCAM Note: pointing accuracy of 7" \leftrightarrow 0.5mm at a focal length of 16m

Same concept as in LST-1 and MAGIC

PMT @ module center

Movable filters 1 ON + 5 OFF or 2 × (1 ON + 2 OFF)

MST/NectarCAM camera Credits for NectarCAM

Semrock filters 425/26 nm, with \emptyset = 40 mm for NectarCAM Note: pointing accuracy of $7^{"} \leftrightarrow 0.5mm$ at a focal length of 16m

At this stage, 1 PMT (central) + 5 OFF regions or 1 PMT (central) + 2 OFF + 1 PMT (off-axis) + 2 OFF or 1 PMT + 2 OFF @ 420nm + 1 PMT + 2 OFF @ emission line

Credits; JWST

Retrieving the signal

Credits: Karl-Heinz Sulanke (DESY)

Limitations for electronic bandwidth

- → Transit time ("jitter") of photomultiplier tubes: **1.5 ns** (rms)
- \rightarrow Shape of the dish:

LST: -

MST: 0.7 ns (rms)

Goal: 500 MHz bandwidth

CTA-N	Large-Sized Telescope (LST)	Medium-Sized Telescope (MST)	
	Mechanics		
Number of telescopes	4	9	
Effective mirror area (including shadowing)	370 m²	88 m²	
Primary reflector diameter	23 m	11.5 m	
Focal length	28 m	16 m	
Optical design	Parabolic	Modified Davies-Cotton	
Arrival time standard deviation	-	0.7 ns	
Pixel size (imaging)	6 arcmin	10 arcmin	
	Optics		
Cone half angle	22 deg	20 deg	
Optical efficiency at 420 nm, incl. mirror reflectivity, shadowing , entrance window, filters, light cones	0.64	0.73	
Normalized spectral distribution with a 420 nm filter, for a 21 deg cone	0.91		
	Photodetection		
PMT excess noise factor	1.21		
PMT quantum efficiency at 420 nm	39%		
PMT transit time standard deviation at 1 p.e.	1.5 ns		
	Bandwidth		
Maximum electronic bandwidth	650 MHz	600 MHz	

Transmission of the signal

Option 1: VCSEL-based system (MPI Phys.) as in LST & MAGIC

sent through 50/125 μ m multi-mode fiber @ λ = 850 nm

Option 2: Off-the-shelf (equivalent?) as in VERITAS

sent through 10 μ m single-mode fiber @ λ = 1550 nm

Transmission of the signal

Option 3: IDROGEN board (IJCLab) developed for radio astronomy

PAON4, experiment @ Nancay - Credits: Ansari+ 2019

Electrical

Digital

FFT

Summary & next steps for NectarCAM

Routing of the signal Julie Prast (LAPP), Alex Steiner (DESY), Oscar Ferreira (LLR)

- from camera to telescope pedestal \checkmark

Definition and mounting of filters Kevin Pressard (IJCLab)

- full compatibility with filters chosen for LST \checkmark

Anode signal → Optical fiber Kale Sulanke (DESY), François Toussenel (LPNHE), David Fink (MPP), Eric Delagne (IRFU, CEA/Saclay)

- signal conditioning \checkmark
- signal degradation about to be measured

NectarCAM operation

- sampling at ~Hz rate of ON/OFF pixel current
- definition of the observing mode

Prepare SII observations with NectarCAM

- end-to-end validation of signal transmission
- characterize NectarCAM performance for SII in Irfu dark room
- explore the science case to prepare 1st observations

Part 2 - Simulation of CTAO-N site with MST/NectarCAM

2024.09.13

J. Biteau & <u>Q. Luce</u>, IJCLab / Univ. Paris Saclay

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma$$

with the visibility following a uniform disk model:

$$V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad \qquad x = \frac{\pi b\theta}{\lambda}$$

CTA-N	Large-Sized Telescope (LST)	Medium-Sized Telescope (MST)
	Mechanics	
Number of telescopes	4	9
Effective mirror area (including shadowing)	370 m²	88 m²
	Optics	
Cone half angle	22 deg	20 deg
Optical efficiency at 420 nm, incl. mirror reflectivity, shadowing , entrance window, filters, light cones	0.64	0.73
Normalized spectral distribution with a 420 nm filter, for a 21 deg cone	0.91	
	Photodetection	
PMT excess noise factor	1.21	
PMT quantum efficiency at 420 nm	39%	

Observation time: T ~ 2.5 h Bandwidth: 500 MHz

Validation of simulation / analysis pipeline

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, θ = 0.72 mas

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma$$

with the visibility following a uniform disk model:

$$V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad \qquad x = \frac{\pi b\theta}{\lambda}$$

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma$$

with the visibility following a uniform disk model:

$$V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad x = \frac{\pi b\theta}{\lambda}$$

Precision on the measurement of the stellar radii?

Scan in B mag. from **0 to 6**, and angular diameter *θ* from **0.1 mas to 1.2 mas**

10 simulations per couple (*θ*, B mag.),

2 free parameters : normalization and $\boldsymbol{\theta}_{\text{UD}}$

Resolution on the angular diameter - Uniform Disk model

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

4 LSTs + 9 MSTs

~2h30 of observations

4 LSTs

 \rightarrow 4 LSTs + 9 MSTs: ~ 1% precision on θ_{up} for stars with B mag. < 4

Target stars

credits: Lucijana Stanic

Adapted from https://target-stars-sii.streamlit.app

Looking at limb-darkening

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

Linear Limb-Darkened Model

$$rac{\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)$$

Note: Constraints useful for studies of exoplanet transit?

Looking at limb-darkening

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2 (\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma$$

with the visibility including limb-darkening effect:

$$V(\lambda_0, d) = \left(\frac{1 - u_{\lambda}}{2} + \frac{u_{\lambda}}{3}\right)^{-2} \left[(1 - u_{\lambda}) \frac{J_1(x)}{x} + u_{\lambda} \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(x)}{x^{3/2}} \right]^2 \qquad \qquad \frac{I(\lambda, \mu = \cos \psi)}{I_0} = 1 - u_{\lambda} (1 - \mu)^2 \left[(1 - u_{\lambda}) \frac{J_1(x)}{x} + u_{\lambda} \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(x)}{x^{3/2}} \right]^2$$

Looking at limb-darkening

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma$$

with the visibility including limb-darkening effect:

$$V(\lambda_0, d) = \left(\frac{1 - u_{\lambda}}{2} + \frac{u_{\lambda}}{3}\right)^{-2} \left[(1 - u_{\lambda}) \frac{J_1(x)}{x} + u_{\lambda} \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(x)}{x^{3/2}} \right]^2 \qquad \qquad \frac{I(\lambda, \mu = \cos \psi)}{I_0} = 1 - u_{\lambda} (1 - \mu)^2$$

Precision on the measurement of the stellar radii?

Scan in B mag. from **0 to 6**, and angular diameter *θ* from **0.1 mas to 1.2 mas**

10 simulations per couple (*θ*, B mag.)

2 reconstructions:

- <u>Uniform Disk fit</u>:
 2 free parameters = normalization and *θ*_{UD}
- <u>Limb-Darkening fit</u>: 3 free parameters = normalization, θ_{LD} and u_{λ}

Resolution on the angular diameter: Uniform Disk fit

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, $u_{\lambda} = 0.4$:

 \rightarrow 4 LSTs + 9 MSTs:

Resolution on the angular diameter: Limb-Darkening fit

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, u_{λ} = 0.4:

4 LSTs

 \rightarrow 4 LSTs: ~ 1% precision on θ_{ID} for stars with B mag. < 1 and large radii (θ > 0.7 mas) ~1% precision on θ_{ID} for stars with B mag. < 2 (θ > 0.2 mas) \rightarrow 4 LSTs + 9 MSTs:

Bias on the angular diameter

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, B magnitude = 1.5, 4 LSTs + 9 MSTs:

→ Uniform Disk fit: ~ 1% precision on θ_{UD} but with a bias evolving with u_{λ} → Limb-Darkening fit: ~ 1% precision on θ_{UD} for stars with B mag. < 2, unbiased if θ > 0.2 mas

Constraining u_{λ} ?

~2h30 of observations, u_{λ} = 0.4:

Linear Limb-Darkened Model: $\frac{I(\lambda,\mu=\cos\psi)}{I_0} = 1 - u_\lambda(1-\mu)$

→ 4 LSTs: ~ 10% precision on θ_{LD} for stars with B mag. < 0.5 and large radii (θ > 0.8 mas) → 4 LSTs + 9 MSTs: ~ 10% precision on θ_{LD} for stars with B mag. < 1.2 (θ > 0.2 mas)

Target stars

credits: Lucijana Stanic

Adapted from https://target-stars-sii.streamlit.app

Number of stars with 10% precision on limb-darkening coefficient in the Northern hemisphere (B mag. < 1.2)

4 LSTs + 9 MSTs: ~10 stars (examples: *α*Lyr, *ε*CMa) for T ~2h30

Significant increase of the science reach with 4 LSTs + 9 MSTs with respect to 4 LSTs

- triple the number of high-precision (sub-percent) measurement of stellar radii
- opens the possibility for precision (<10%) measurement of limb-darkening

Investigation limited to Prasenjit's "interesting" science cases (i.e. below "exciting" level)

- further exploration of science case and CTAO-S alpha-configuration surely promising!

Backup

Stellar intensity interferometry (SII): concept

Initiated by Hanbury-Brown & Twiss

Development of the Narrabri Stellar Intensity Interferometer Distance *d* = 10-200m between the two telescopes (6.5m diameter) Single PMT with 20% Q.E. at λ = 440 nm on each telescope, I_{anode} ~ 100 µA

Measurement of the angular diameter of 32 stars

Time correlation of 2 PMTs ↔ constructive interference of 2 photons pathways

→ angular extent of an incoherent light source with $\Delta \theta = \lambda / d \sim 80 \ \mu as \times (\lambda / 400 \ nm) \times (d / 1 \ km)^{-1}$

Revived by current generation IACT, with vast science case

Stellar diameters, winds, photosphere; Binary systems, accretion disks; Novae and other transient events; Rapid rotators; Exoplanet imaging; Stellar occultation: trans-Neptunian / Kuiper-belt objects (see <u>SII2023 workshop</u>)

Observations during moon time: increase of IACT duty cycle!

Narrabri 6.5m tels (1963-1974)

Uniform disk model: performance

Limb darkened model: performance

Constraining u_{λ} ? 4 LSTs

$$rac{I(\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)$$

Constraining u_{λ} ? 4 LSTs + 9 MSTs

$$rac{I(\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)$$

