Stellar Intensity Interferometry with NectarCAM on the MSTs-N

with numerous inputs from LST and MST colleagues incl. particularly significant inputs from **Tarek Hassan** *(LST team, CIEMAT)*

Ɣ-ray game changer: Cherenkov Telescope Array Observatory

HEGRA ('90s)

MAGIC ('00s,'10s)

2 sites to access the entire sky w/ breakthrough performance

Sensitivity: 5-10× better than current *E*-range: 0.02-200 TeV (vs 0.1-10 TeV) *E*-resolution: <10% (vs <17%) >0.2 TeV

CTAO-N ('20s-'40s)

The MSTs on the CTAO-North Site

The MSTs on the CTAO-North Site

Detection modules of NectarCAM

Credits: A. Tsihahina & O. Ferreira

In the field?

In the field?

Calibration devices of NectarCAM

Critical design & manufacturing review V \rightarrow in production for 9 cameras + spares *Thanks to great IJCLab R&D team, as well as Barbara Biasuzzi's postdoc, Pooja Sharma's thesis, Sonal Patel's postdoc, Coline Dubos's thesis*

NectarCAM campaign in Adlershof 23/05 – 25/06/2019

From 2020 to 2023

Part 1 - MST/NectarCAM implementation

Triggered by a talk by **Tarek Hassan** at the Nov. 2022 CTAO Consortium meeting in Napoli

SII with medium-sized telescopes (MSTs) at CTAO-North?

Including MSTs in the SII array improves:

- ᐧ Extent of the coverage of spatial frequencies (*uv*-plane) → Order-of-magnitude improved precision on ~100 µas stellar radius
- ᐧ Density of uv coverage: **never achieved so far**! → True capacity for "model-based" imaging (phase is unknown)

Modifications of the camera

Same concept as in LST-1 and MAGIC

Same concept as in LST-1 and MAGIC

Semrock filters 425/26 nm, with \varnothing = 40 mm for NectarCAM *Note: pointing accuracy of 7" ↔ 0.5mm at a focal length of 16m*

Same concept as in LST-1 and MAGIC

MST/NectarCAM camera

Credits for NectarCAM

PMT @ camera center -

PMT @ module center (3 modules below)

> **Movable filters** 1 ON + 5 OFF

At this stage, 1 PMT (central) + **5 OFF regions → goal: increase precision on night-sky background**

Table 5. Evaluated systematic uncertainties over squared visibility measurements identified to effect the MAGIC-SII system.

Semrock filters 425/26 nm, with \varnothing = 40 mm for NectarCAM *Note: pointing accuracy of 7" ↔ 0.5mm at a focal length of 16m* Credits: [MAGIC SII paper](https://arxiv.org/abs/2402.04755)

Same concept as in LST-1 and MAGIC

MST/NectarCAM camera

Credits for NectarCAM

PMT @ camera center -

PMT @ module center (3 modules below)

Movable filters 1 ON + 5 OFF or $2 \times (1 \text{ ON} + 2 \text{ OFF})$ **At this stage, 1 PMT** (central) + **5 OFF regions**

or 1 PMT (central) + **2 OFF** ➕ **1 PMT** (off-axis) + **2 OFF**

chessboard

Semrock filters 425/26 nm, with \varnothing = 40 mm for NectarCAM *Note: pointing accuracy of 7" ↔ 0.5mm at a focal length of 16m*

Same concept as in LST-1 and MAGIC

MST/NectarCAM camera

Credits for NectarCAM

PMT @ camera center -

PMT @ module center (3 modules below)

> **Movable filters** 1 ON + 5 OFF or $2 \times (1 \text{ ON} + 2 \text{ OFF})$

Semrock filters 425/26 nm, with \varnothing = 40 mm for NectarCAM *Note: pointing accuracy of 7" ↔ 0.5mm at a focal length of 16m*

At this stage, 1 PMT (central) + **5 OFF regions or 1 PMT** (central) + **2 OFF** ➕ **1 PMT** (off-axis) + **2 OFF or 1 PMT** + **2 OFF @ 420nm** ➕ **1 PMT** + **2 OFF @ emission line**

Credits; JWST Credits; JWST

Retrieving the signal

Credits: Karl-Heinz Sulanke (DESY)

Limitations for electronic bandwidth

- \rightarrow Transit time ("jitter") of photomultiplier tubes: **1.5 ns** (rms)
- \rightarrow Shape of the dish:

LST: -

MST: 0.7 ns (rms)

Goal: 500 MHz bandwidth

Transmission of the signal

Option 1: VCSEL-based system (MPI Phys.) as in LST & MAGIC

sent through 50/125µm multi-mode fiber $\omega \lambda$ = 850 nm

Option 2: Off-the-shelf (equivalent?) as in VERITAS

Transmission of the signal

Option 3: IDROGEN board (IJCLab) developed for radio astronomy

PAON4, experiment @ Nancay - Credits: [Ansari+ 2019](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.2965A/abstract)

 Credits: [MAGIC SII paper](https://arxiv.org/abs/2402.04755) Camera Slow Control 50 mm Ø filter **RS485** 1Hz DC Reports DC ADC Winston Cone $[0-50\mu A]$ 30 mm \varnothing PMT 850 nm MM VCSEL 50/125 um Multimode Optical Fiber PCle₁ ج
ج HF ADC x8 | Nvidia LP 125MHz

Summary & next steps for NectarCAM

Routing of the signal *Julie Prast (LAPP), Alex Steiner (DESY), Oscar Ferreira (LLR)*

- from camera to telescope pedestal ✓

Definition and mounting of filters *Kevin Pressard (IJCLab)*

- full compatibility with filters chosen for LST ✓

Anode signal → Optical fiber *Kale Sulanke (DESY), François Toussenel (LPNHE), David Fink (MPP), Eric Delagne (IRFU, CEA/Saclay)*

- signal conditioning ✓
- signal degradation about to be measured

NectarCAM operation

- sampling at ~Hz rate of ON/OFF pixel current
- definition of the observing mode

Prepare SII observations with NectarCAM

- end-to-end validation of signal transmission
- characterize NectarCAM performance for SII in Irfu dark room
- explore the science case to prepare 1st observations

Part 2 - Simulation of CTAO-N site with MST/NectarCAM

2024.09.13 J. Biteau & Q. Luce, IJCLab / Univ. Paris Saclay

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$
S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma
$$

with the visibility following a uniform disk model:

$$
V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad x = \frac{\pi b\theta}{\lambda}
$$

Observation time: T ~ 2.5 h Bandwidth:

500 MHz

Validation of simulation / analysis pipeline

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

 \sim 2h30 of observations, θ = 0.72 mas

24

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$
S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0,d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma^{-1}
$$

with the visibility following a uniform disk model:

$$
V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad x = \frac{\pi b\theta}{\lambda}
$$

Simulations of SII for CTAO-N

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$
S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma
$$

with the visibility following a uniform disk model:

$$
V(\lambda_0, d) = \left(2\frac{J_1(x)}{x}\right)^2 \qquad x = \frac{\pi b\theta}{\lambda}
$$

Precision on the measurement of the stellar radii?

Scan in B mag. from **0 to 6**, and angular diameter θ from **0.1 mas to 1.2 mas**

10 simulations per couple $(\theta, B \text{ mag.})$,

2 free parameters : normalization and θ_{UD}

Resolution on the angular diameter - Uniform Disk model

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations

4 LSTs 4 LSTs + 9 MSTs

- \rightarrow **4 LSTs:** \sim **1% precision on** θ_{UD} **for stars with B mag. < 3**
- \rightarrow **4 LSTs + 9 MSTs:** \sim 1% precision on θ_{un} for stars with B mag. < 4

Target stars

credits: Lucijana Stanic

Adapted from https://target-stars-sii.streamlit.app

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

$\frac{I(\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)$ **Linear Limb-Darkened Model**

 10% precision w/ eclipsing binaries

Note: Constraints useful for studies of exoplanet transit?

Looking at limb-darkening

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$
S/N = A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_\nu} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}} \cdot (1+\beta)^{-1} \cdot \sigma
$$

with the visibility including limb-darkening effect:

$$
V(\lambda_0, d) = \left(\frac{1-u_\lambda}{2} + \frac{u_\lambda}{3}\right)^{-2} \left[(1-u_\lambda) \frac{J_1(x)}{x} + u_\lambda \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(x)}{x^{3/2}} \right]^2 - \frac{I(\lambda, \mu = \cos \psi)}{I_0} = 1 - u_\lambda (1 - \mu)
$$

From the expected signal-to-noise ratio:

$$
^{\circ }S/N=A\cdot \alpha (\lambda _{0})\cdot q(\lambda _{0})\cdot n(\lambda _{0})\cdot |V|^{2}(\lambda _{0},d)\cdot \sqrt{b_{\nu }}\cdot F^{-1}\cdot \sqrt{\frac{T}{2}}\cdot (1+\beta)^{-1}\cdot \sigma
$$

with the visibility including limb-darkening effect:

$$
V(\lambda_0, d) = \left(\frac{1-u_\lambda}{2} + \frac{u_\lambda}{3}\right)^{-2} \left[(1-u_\lambda) \frac{J_1(x)}{x} + u_\lambda \sqrt{\frac{\pi}{2}} \frac{J_{3/2}(x)}{x^{3/2}} \right]^2 \hspace{1cm} \frac{I(\lambda, \mu = \cos \psi)}{I_0} = 1 - u_\lambda (1 - \mu)
$$

Precision on the measurement of the stellar radii? All the stellar stellar stellar and the stellar s

Scan in B mag. from **0 to 6**, and angular diameter θ from **0.1 mas to 1.2 mas**

10 simulations per couple $(\theta, B \text{ mag.})$

2 reconstructions:

- Uniform Disk fit: 2 free parameters = normalization and θ_{UD}
- Limb-Darkening fit: 3 free parameters = normalization, θ_{in} and u_{in}

Resolution on the angular diameter: Uniform Disk fit

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, *u***= 0.4:**

 \rightarrow **4 LSTs:** \sim **1% precision on** θ_{un} **for stars with B mag. < 3** \rightarrow **4 LSTs + 9 MSTs:** \sim 1% precision on θ_{un} for stars with B mag. < 4

But careful about the bias!

Resolution on the angular diameter: Limb-Darkening fit

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, *u***= 0.4:**

 \rightarrow **4 LSTs:** \sim **1% precision on** θ_{Ln} **for stars with B mag. < 1 and large radii (** θ **> 0.7 mas)** \rightarrow **4 LSTs + 9 MSTs:** \sim **1% precision on** θ_{Ln} for stars with B mag. < 2 (θ > 0.2 mas)

Bias on the angular diameter

credits: Quentin Luce, Tarek Hassan, Jonathan Biteau

~2h30 of observations, B magnitude = 1.5, 4 LSTs + 9 MSTs:

 \rightarrow **Uniform Disk fit:** \sim 1% precision on θ_{UD} but with a bias evolving with u_{D} \rightarrow Limb-Darkening fit: ~ 1% precision on θ_{LD} for stars with B mag. < 2, unbiased if θ > 0.2 mas

34

Constraining u?

 \sim 2h30 of observations, u_x = 0.4:

Linear Limb-Darkened Model: $\frac{I(\lambda,\mu=\cos\psi)}{I_0} = 1 - u_\lambda(1-\mu)$

 \rightarrow **4 LSTs:** \sim **10% precision on** θ_{LD} **for stars with B mag. < 0.5 and large radii (** θ **> 0.8 mas)** \rightarrow 4 LSTs + 9 MSTs: \rightarrow 10% precision on θ_{Ln} for stars with B mag. < 1.2 (θ > 0.2 mas)

Target stars

credits: Lucijana Stanic

Adapted from https://target-stars-sii.streamlit.app

Number of stars **with 10% precision on limb-darkening coefficient** in the Northern hemisphere (B mag. $<$ 1.2)

4 LSTs + 9 MSTs: **~10 stars** (examples: α Lyr, ε CMa) **for T** ~2h30

Significant increase of the science reach with 4 LSTs + 9 MSTs with respect to 4 LSTs

- triple the number of high-precision (sub-percent) measurement of stellar radii
- opens the possibility for precision (<10%) measurement of limb-darkening

Investigation limited to Prasenjit's "interesting" science cases (i.e. below "exciting" level)

- further exploration of science case and CTAO-S alpha-configuration surely promising!

Backup

Stellar intensity interferometry (SII): concept

Initiated by Hanbury-Brown & Twiss

Development of the Narrabri Stellar Intensity Interferometer Distance *d* = 10-200m between the two telescopes (6.5m diameter) Single PMT with 20% Q.E. at λ = 440 nm on each telescope, $I_{\text{anode}} \sim 100 \mu A$

Measurement of the angular diameter of 32 stars

Time correlation of 2 PMTs \leftrightarrow constructive interference of 2 photons pathways

 \rightarrow angular extent of an incoherent light source with $Δθ = λ / d ~ 80 \text{ }\mu$ as × (λ / 400 nm) × (*d* / 1 km)⁻¹

Revived by current generation IACT, with vast science case

Stellar diameters, winds, photosphere; Binary systems, accretion disks; Novae and other transient events; Rapid rotators; Exoplanet imaging; Stellar occultation: trans-Neptunian / Kuiper-belt objects (see [SII2023 workshop\)](https://ccapp.osu.edu/workshops/SII2023)

Observations during moon time: increase of IACT duty cycle!

Narrabri 6.5m tels (1963-1974)

Uniform disk model: performance

Limb darkened model: performance

Constraining u? 4 LSTs

$$
\tfrac{I(\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)
$$

Constraining u? 4 LSTs + 9 MSTs

$$
\tfrac{I(\lambda,\mu=\cos\psi)}{I_0}=1-u_\lambda(1-\mu)
$$

43